If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4t^2)+24t-50=0
a = 4; b = 24; c = -50;
Δ = b2-4ac
Δ = 242-4·4·(-50)
Δ = 1376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1376}=\sqrt{16*86}=\sqrt{16}*\sqrt{86}=4\sqrt{86}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{86}}{2*4}=\frac{-24-4\sqrt{86}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{86}}{2*4}=\frac{-24+4\sqrt{86}}{8} $
| 9k+6=72+4 | | −6(−p+8)=−6p+12 | | 5/6x+3=12x-9 | | (X+6)÷2-(x-8)÷3=5 | | 7a+10-a-6=-3a+6a | | -(2x-7)=2(5x-1)+12 | | 4(8c+4)=0 | | 1.2g=5.5 | | 380=4x^2-20 | | 11=7x-x-1 | | 6x+2=-6+2x+24 | | t10=7=+-14 | | 3(2x+6)=-41+47 | | 4(x+3)(x^2+3x)+x(x)(x^2+3x)=9(x)(x+3) | | z-2(z-4)=12 | | 12-4x=34 | | 1.5a=-18 | | 4(3x-5)=2(6x-11)+2 | | -5+6a=-59 | | 100x+99-x=9 | | 3a-6+9a-7=-6a+3-a | | -T^2-t+8=0 | | a-6+9a-7=-6a+3-a | | 6x-81=x+54 | | 2(5x+6)=-35+7 | | 1-4x=3x-69 | | -16=-5x+3x | | 4-x=5x-12 | | 2(3x+5)=-43+29 | | g2+15=26 | | 6v+26=-2(v-9) | | 10b-45=38b-159 |